Quantitative and qualitative differences in the metabolism of 14C-1,3-butadiene in rats and mice: relevance to cancer susceptibility.

نویسندگان

  • K A Richardson
  • M M Peters
  • B A Wong
  • R H Megens
  • P A van Elburg
  • E D Booth
  • P J Boogaard
  • J A Bond
  • M A Medinsky
  • W P Watson
  • N J van Sittert
چکیده

1,3-Butadiene (butadiene) is a potent carcinogen in mice, but not in rats. Metabolic studies may provide an explanation of these species differences and their relevance to humans. Male Sprague-Dawley rats and B6C3F1 mice were exposed for 6 h to 200 ppm [2,3-14C]-butadiene (specific radioactivity [sa] 20 mCi/mmol) in a Cannon nose-only system. Radioactivity in urine, feces, exhaled volatiles and 14C-CO2 were measured during and up to 42 h after exposure. The total uptake of butadiene by rats and mice under these experimental conditions was 0.19 and 0.38 mmol (equivalent to 3.8 and 7.5 mCi) per kg body weight, respectively. In the rat, 40% of the recovered radioactivity was exhaled as 14C-CO2, 70% of which was trapped during the 6-h exposure period. In contrast, only 6% was exhaled as 14C-CO2 by mice, 3% during the 6-h exposure and 97% in the 42 h following cessation of exposure. The formation of 14C-CO2 from [2,3-14C]-labeled butadiene indicated a ready biodegradability of butadiene. Radioactivity excreted in urine accounted for 42% of the recovered radioactivity from rats and 71% from mice. Small amounts of radioactivity were recovered in feces, exhaled volatiles and carcasses. Although there was a large measure of commonality, the exposure to butadiene also led to the formation of different metabolites in rats and mice. These metabolites were not found after administration of [4-14C]-1,2-epoxy-3-butene to animals by i.p. injection. The results show that the species differences in the metabolism of butadiene are not simply confined to the quantitative formation of epoxides, but also reflect a species-dependent selection of metabolic pathways. No metabolites other than those formed via an epoxide intermediate were identified in the urine of rats or mice after exposure to 14C-butadiene. These findings may have relevance for the prediction of butadiene toxicity and provide a basis for a revision of the existing physiologically based pharmacokinetic models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Species differences in the metabolism and disposition of inhaled 1,3-butadiene and isoprene.

Species differences in sensitivity to carcinogenic effects from inhaled 1,3-butadiene might stem, at least in part, from differences in uptake, metabolism, and distribution of 1,3-butadiene. To examine this possibility, rats, mice, and monkeys were exposed to stepped concentrations of 14C-labeled 1,3-butadiene and the chemically related compound, isoprene. Respiratory data were collected during...

متن کامل

Comparative assessment of carcinogenic risk of respiratory exposure to 1,3-Butadiene in a petrochemical industry by the US Environmental Protection Agency (USEPA) and Singapore Health Department methods

Introduction: 1,3-Butadiene is a carcinogenic compound that can be emitted to the atmosphere from several sources like petrochemical industry. One way to determine the level of carcinogenic and health effects of respiratory exposure to pollutants in the workplace is to use risk assessment methods. The aim of this study was to comparative assessment of carcinogenic risk of respiratory exposure t...

متن کامل

Analysis of diepoxide-specific cyclic N-terminal globin adducts in mice and rats after inhalation exposure to 1,3-butadiene.

1,3-Butadiene is an important industrial chemical used in the production of synthetic rubber and is also found in gasoline and combustion products. It is a multispecies, multisite carcinogen in rodents, with mice being the most sensitive species. 1,3-Butadiene is metabolized to several epoxides that form DNA and protein adducts. Previous analysis of 1,2,3-trihydroxybutyl-valine globin adducts s...

متن کامل

Inhalation pharmacokinetics of 1,3-butadiene and 1,2-epoxybutene-3 in rats and mice.

Studies were conducted on inhalation pharmacokinetics of 1,3-butadiene and of its primary reactive metabolic intermediate 1,2-epoxybutene-3 in rats (Sprague-Dawley) and mice (B6C3F1). Investigations of inhalation pharmacokinetics of 1,3-butadiene revealed saturation kinetics of 1,3-butadiene metabolism in both species. For rats and mice linear pharmacokinetics apply at exposure concentrations b...

متن کامل

Studies on the mechanism of 1,3-butadiene-induced leukemogenesis: the potential role of endogenous murine leukemia virus.

Previous studies have revealed marked differences in the incidence of leukemia between rats and mice exposed to 1,3-butadiene that do not appear to be readily explained on the basis of pharmacokinetics or metabolism. Chronic exposure to 1,3-butadiene results in a high incidence of thymic lymphoma in B6C3F1 mice that is not observed in Sprague-Dawley rats. Studies at the Chemical Industry Instit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 49 2  شماره 

صفحات  -

تاریخ انتشار 1999